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1 Week 1 Section 1
1.1 Video: Introduction to factor investing
1.1.1 Smart beta

Another name for factor investing is smart beta. It consists of two parts:

• passive, beta: index investing (S&P 500)
• active: active trading, possibly outperforming the index.

An Active manager attempts to bring his or her skills to provide better risk adjusted returns that
the benchmark index itself can deliver.

Factor investing is rule-based active investing without the subjective views of a manager.

Indicization refers to the trend of creating new indices that capture the portion of active manage-
ment that is rules based and systematic, and in the long run should outperform the cap-weighted
benchmark.

A factor is a variable that influences the returns of assets. It represents a commonality in the
returns of assets, something outside of the individual asset.

Types of factors:

• macro factors: (industrial) growth, inflation
• statistical factors: information extracted from the data that may not be identifiable
• intrinsic factors or style factors: value-growth, momentum, low volatility …

1.2 Video: Factor models and the CAPM
1.2.1 Factor model

the factor model decomposes return R into the sum of the premia. The premium is the return that
you (can) get in exchange for exposing yourself to that factor.

Ri = β1f1 + β2f2 + . . .+ β3f3 + α+ ε

• Ri: the return
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• β: multiplier
• f : return of a factor
• α: fixed component
• ε: error term, the part of the return that factors cannot explain.

1.2.2 CAPM

CAPM stands for capital asset pricing model and it is a strange omission that this is not mentioned
in the video!

E(ri)− rf =
cov(ri, rm)

var(rm)
(E(rm)− rf )

E(ri)− rf = βi(E(rm)− rf )

• E(ri)− rf : excess return of an asset i over the risk-free rate rf
• E(rm)− rf : excess return of the market m over the risk-free rate
• βi: the factor for asset i. β is a measure of the volatility of a security or portfolio compared

to the market as a whole.
• cov(ri, rm): covariance of the return of asset i and the return of the market m.
• var(rm): the variance of the return of the market m.

Since the excess return of an asset is based on the market return and the risk free rate, all assets
(should, but don’t) line up on a straight line: the security market line (see image below).
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Image from Wikipedia

Question: According to the CAPM, the α term in the CAPM Factor Model is

• Zero
• One
• Zero if Epsilon is Zero, One otherwise
• Depends on the Risk Free Rate

Answer:

• Zero: Correct. The CAPM predicts that the alpha term is zero

• One: This should not be selected. A Factor Model decomposes the return to Factor Returns,
Alpha and an Error Term (epsilon) and the CAPM predicts that the excess return of a stock
is a multiple of that stock’s Beta relative to the market

• Zero if Epsilon is Zero, One otherwise.: This should not be selected. Epsilon is the Error
Term

• Depends on the Risk Free Rate.: This should not be selected. The CAPM only uses the risk
free rate to compute excess returns

The CAPM with just one factor is not accurate. That is why there are multi-factor models that
change CAPM anomalies into regular factors.
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1.3 Video: Multi-Factor models and Fama-French
1.3.1 Fama-French

The Fama-French model is an extension of the CAPM model.

Size In the Fama-French model the stocks are sorted according to market capitalization. Small-
cap stocks on average outperform large-cap stocks. this is called the size-effect and is not explained
by the CAPM-model (Section 1.2.2).

Value vs. growth The Fame-French model shows that value stocks outperform growth stocks.
This is probably why book to price ratio is briefly mentioned in the video.

Question: A Manager tells you that he concentrates his portfolio in Value stocks because Value
outperforms Growth, and his portfolio has outperformed the S&P500 for the last 3 years. As-
suming his statements are all True, which of the following statements can you conclude from this
information.

• The portfolio will outperform the S&P500 next year -The portfolio will outperform the
S&P500 next year if the Value factor has a positive risk premium next year

• If the manager does not show style drift AND the Value Factor generates a positive risk
premium the next year, THEN the manager is likely to outperform, but it is not a certainty

• None of the Above

Answer: If the manager does not show style drift (Section 1.4.4) AND the Value Factor generates
a positive risk premium the next year, THEN the manager is likely to outperform, but it is not a
certainty. Correct

“The Factors Mimicking Portfolios are broad portfolio and it is possible to see a return that is
different from the Factor Mimicking portfolio.” (This is not a very clear explanation. Factor
mimicking is mentioned (not even explained) after this question. Sloppy work.)

1.3.2 Fama and French (1993)

The model includes a small and value factor to the market factor.

E[ri] = rf + βi,MKTE[rm − rf ] + βi,SMBE[SMB] + βi,HMLE[HML]

• MKT: market factor
• SMB: small minus big stocks
• HML: high book/price (value) minus low book/price (growth)

Fama and French interpret the small stock effect and the value effect as being systematic factors.

SMB and HML are zero cost portfolios so the factors βi,SMB and βi,HML are centered around zero.

1.3.3 Other factors

In addition to value the following factors are recognized:

• low ‘vol’ (=volatility) beats high vol
• high quality beats low quality (??)
• momentum
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Although size is relevant, it is not seen as a factor. The factors mentioned above are applied to
small caps portfolios and large caps portfolios. (Probably, large caps portfolio are desirable, despite
having a lower return.)

The factors can be used as diagnostic tools to decompose returns. This can be used to perform
style analysis to determine investment behavior.

1.4 Video: Factor benchmarks and style analysis
1.4.1 Style analysis

Consider a portfolio with β = 1.3

E(ri − rf ) = α+ 1.3E(rm − rf )

E(ri) = α+ [−0.3rf + 1.3E(rm)]

Factor benchmark [−0.3rf +1.3E(rm)] is a short position of $0.30 in cash (T-bills) and a leveraged
position of $1.30 in the market portfolio. This can be earned without intervention by an asset
manager. The α can be seen as the value that was added by the manager.

Question: Assume the risk free rate is 1% per year and the Stock Market returned 11% in a given
year. An Active Manager “beat the market” and generated a 14% return and had a Beta of 1.3.
Did the manager generate an α = 0; α > 0; α < 0?

Answer: rf = 1%, rm = 11%, ri = 14%, β = 1.3

E(ri − rf ) = α+ βE(rm − rf )

α = E(ri − rf )− βE(rm − rf ) = 14− 1− 1.3 ∗ (11− 1) = 0

1.4.2 Sharpe style analysis

Model:
Rm = W1Ri1 +W2Ri2 +W3Ri3 + α+ ε

• Wi: weight of a part i of the portfolio with
∑

iWi = 1 and all Wi > 0.
• Ri: return of a particular type of investment (oil companies, european companies, it could be

anything). It is an explanatory variable.

You run a regression to determine if α > 0. If it is, that is due to the actions of the manager. The
regression is solved through quadratic programming, repeated for a sliding window of 1-3 years.

1.4.3 Quality of fit

Quality of fit:
PSEUDOR2 =

VAR(Rm)− VAR(ε)

VAR(Rm)

1.4.4 Style drift

As the time window moves, you can see the weights Wi change. This is called style drift.
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2 Week 1 Section 2
2.1 video: Shortcomings of cap-weighted indices
2.1.1 inefficiency of cap-weighted (cw) benchmarks

Portfolios that use cw indices are well within the efficient frontier. they do not give the highest
return for a given level of volatility. However, the portfolios on the efficient frontier suffer from
look-ahead bias.

Platen and Rendek (2010) found that the Sharpe-ratio of equally weighted (ew) portfolios was
higher than that of the cap-weighted portfolio. The cap-weighted portfolio is not well diversified
and holds unrewarded risk.

2.1.2 Smart weighted benchmarks

• equally-weighted benchmarks
• minimum variance benchmarks
• risk parity benchmarks

2.1.3 Monkeys!

Clare, Motson and Thomas (2013) found that randomly selecting and weighting stocks outperforms
the cw index. This story explains their approach.

2.2 Video: From cap-weighted benchmarks to smart-weighted benchmarks
2.2.1 shortcomings of cap-weighted indices

• Cw indices have an inefficient diversification because high allocation to large cap stocks and
growth stocks. There are unrewarded specific risks that lead to a sub-optimal risk reward
ratio.

• Cw indices provide an inefficient exposure to rewarded systematic risks. As explained by
Fama and French (Section 1.3.2), small caps stocks and value stocks tend to have a higher
reward.

2.2.2 Smart factor benchmarks

A smart factor benchmark can be constructed using this two step process:

1. Select the type of factor exposure that you want to hold in your portfolio (value, size, mo-
mentum, volatility (see Section 1.3.3)).

Valuation Size Momentum Volatility
Value Large Cap Past Winners High Vol
Growth Mid Cap Past Losers Low Vol

Book to market
ratio

Freefloat adjusted
market cap

Cumulative return over the
past year

Vol of weekly
returns

2. Select your preferred weighting scheme(s).
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• Equally-Weighted
• Efficient Minimum Variance
• Risk Parity
• …

3 Week 2 Section 1
3.1 Video: The curse of dimensionality
3.1.1 Problem

We have to estimate the parameters for all N portfolio constituents:

• N return parameters
• N volatility parameters
• N ∗ (N − 1)/2 correlation parameters

This gives too much data. We might have to deal with 10 years of daily returns for 5000 stocks:
10 ∗ 250 ∗ 5000 parameters.

Question: What is the number of parameters required for mean-variance optimization based on
the S&P 500 universe, which contains 500 stocks?

Answer: N = 500 : N +N +N ∗ (N − 1)/2 → 125750

3.1.2 Possible cures

• increase the sample size to estimate all parameters accurately
– increase sample period
– increase frequency

• decrease number of parameters
– decrease number of assets N .
– decrease the number of parameters for a fixed N .

3.1.3 Extreme example 1: no model risk - high sample risk

Reduce the correlation parameters to a sample covariance estimate.

Ŝij =
1

t

T∑
t=1

(Rijt − R̄i)(Rjt − R̄j)

R̄i =
1

T

T∑
t=1

Rit

R̄j =
1

T

T∑
t=1

Rjt

• Ŝij : sample covariance estimate
• Rit: historical return of Ri at time t.
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• T : the observed period
• R̄i: the mean of Ri over time T

3.1.4 Extreme example 2: low sample risk - high model risk

This approach uses a constant correlation model (CC) in which allN(N−2)/2 individual correlation
parameters ρij tween returns are replaced with a single correlation parameter ρ̂.

σ̂CC
ij = σ̂iσ̂j ρ̂

• σ̂CC
ij : constant correlation model covariance estimate for i, j

• σ̂i: estimator for stock i volatility
• ρ̂: correlation parameter

This single correlation parameter is estimated by the average:

ρ̂ =
1

N(N − 1)

N∑
i,j=1;i ̸=j

ρ̂ij

Question: What is the number of parameter estimates required for mean-variance optimization
based on the S&P 500 universe, when using the constant correlation covariance matrix estimate?

Answer: We need 500 expected return estimates (R̄i), 500 volatility parameter estimates (σ̂i), and
also one correlation parameter estimate (ρ̂).

3.2 Video: Estimating the Covariance Matrix with a Factor Model
3.2.1 Factor-based covariance estimate

Assume stock returns are driven by a limited set of factors:

Rit = µi + βi1F1t +· · ·+ βikFkt +· · ·+ βiKFKt + ϵit

• Rit: return of asset i at time t
• µi: ??
• βik: sensitivity of asset i with respect to factor Fkt

• Fkt: factor
• ϵit: error term, the part that is not explained by the factor model.
• K: the number of factors

Variance for the 2-factor case:

σ2
l = β2

ilσ
2
F1 + β2

i2σ
2
F2 + 2βilβi2Cov(Fl, F2) + σ2

ϵl

Covariance for the 2-factor case:

σij = βilβjlσ
2
F1 + βi2βj2σ

2
F2 + (βilβj2 + βi2βjl)Cov(F1, F2) + Cov(ϵit, ϵjt)
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We assume that the error terms ϵit and ϵjt are uncorrelated. This means that the specific risk for
these stocks are uncorrelated. We introduce model risk to reduce the number of parameters.

Cov(ϵit, ϵjt) = 0

3.2.2 Case with uncorrelated parameters

General composition of returns for K factors:

cov(Ri(t), Rj(t)) =

K∑
k=1

βikβjkσ
2
Fk

+ cov(ϵi(t), ϵj(t))

Assuming the error terms are uncorrelated cov(ϵit, ϵjt) = 0:

σij = cov(Ri(t), Rj(t)) =

K∑
k=1

βikβjkσ
2
Fk

for i ̸= j

σii = σ2
i = cov(Ri(t), Ri(t)) =

K∑
k=1

β2
ikσ

2
Fk

for i = j

Question: How many parameters do you need to estimate when using a 2-factor models for
estimating the covariance matrix of a universe of 500 stocks?

Answer: We first need 500 volatility estimates σi for individual stock returns (i = 1· · · 500), plus
500 estimates of betas of stocks with respect to factor k = 1 (βi1), 500 estimates of betas of stocks
with respect to factor k = 2 (βi2), and finally 2 volatility estimates for factor returns, which gives a
total of 500+500+500+2=1,502, which compares favorably to 500x499/2=124,750 when using the
sample covariance matrix estimate.

3.2.3 Choice of factor model

The simplest model is Sharpe’s single-factor market model (1963):

Ri,t − rf,t = αi + βi(RM,t − rf,t) + ϵi,t

There are three families of factor models: - explicit macro factor model with inflation, growth,
interwst rates, time spread (??) - explicit micro factor model with stock specific factors: country,
industry, size, book-to-market. - implicit model with statistical factors: perform statistical analysis
on data to determine orthogonal uncorrelated factors

3.3 Video: Honey I Shrunk the Covariance Matrix!
3.3.1 Shrinkage

The curse of dimensionality can be handled by a new methodology: shrinkage.
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There is a trade-off between sample risk and model risk. Sample-based estimates for covariance
parameters have lot of sample risk, too many parameters to estimate, but there is no model risk.

There are other methodologies like the constant correlation methodology (see Section 3.1.4) or
factor based methodology (see Section 3.2.1) that suffer from a lower degree of sample risk, because
they allow to reduce the number of parameters to estimate. But that came at the cost of introducing
some kind of structure, and therefore there is some fair amount of model risk.

Statistical shrinkage mixes the two methodologies to deliver the optimal trade-off.

Ŝshrink = δ̂∗F̂ + (1− δ̂∗)Ŝ

• Ŝshrink: covariance metrics parameter of the covariance matrix
• δ̂∗: percentage to mix the two estimators described below
• F̂ : the factor model-based estimator for the covariance matrix (with model risk)
• Ŝ: data based estimate for the covariance matrix (with sample risk)

Question: Consider two stocks with sample volatility estimates at 20% and 30%, respectively, and
sample correlation at .75. Further assume that the average of the sample correlation estimates of all
stocks in the universe is .5. What is for these two stocks the sample-based covariance estimate, the
constant correlation covariance estimate and the covariance estimate based on statistical shrinkage
with a shrinkage factor of 50%?

Answer: The sample-based estimate σ̂1,2 = σ1σ2ρ1,2 is 20% ∗ 30% ∗ 0.75 = 0.045. The constant
correlation estimate σ̂CC

ij = σ̂iσ̂j ρ̂ is 20% ∗ 30% ∗ 0.5 = 0.03. The shrinkage estimate σ̂shrink
1,2 =

δσ̂1,2 + (1− δ)σ̂CC
ij with δ = 0.5 is (0.045 + 0.03)/2 = 0.0375.

Performing statistical shrinkage is formally equivalent to introducing min/max weight constraints.

Just LeDoit in Python: sklearn.covariance.LedoitWolf

4 Week 2 Section 2
4.1 Video: Portfolio Construction with Time-Varying Risk Parameters
4.1.1 Estimating volatility

There is a curse of non-stationarity: the parameters vary over time.

Define σT as the volatility between day T and day T + 1 as estimated at the end of day T :

σ2
T =

1

T

T∑
t=1

(Rt − R̄)2

R̄ =
1

T

T∑
t=1

Rt

Assume that the mean R̄ = 0 (Rt is centered around zero). The variance σ2
T simplifies to:
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σ2
T =

1

T

T∑
t=1

R2
t

Question: Consider the following stream of returns: +1%, -2%, -1%, +2%. What are the corre-
sponding (arithmetic) average return and volatility estimates?

[1]: import pandas as pd
returns= pd.Series([0.01,-0.02,-0.01,0.02])
returns.mean(), returns.std(ddof=0)

[1]: (0.0, 0.015811388300841896)

Answer: Average return is (1%-2%-1%+2%)/4=0%. Variance of returns is (1%2-2%2-
1%2+2%2)/4=0.025%. Volatility is square-root of variance: √0.025%=1.58%.

4.1.2 Curse of non-stationarity

When trying to reduce sample risk (see Section 3.1.3), it is better to increase the frequency than
increasing the time period in case of non-stationary return distributions.

4.1.3 Expanding window analysis

As time goes by, you add data to calculate the estimate of the volatility.

4.1.4 Rolling window analysis

As new data becomes available, you remove the oldest data to calculate the exstimate of volatility.
The size of the observation window remains the same.

Question: What type of data would give you the best estimation power for covariance matrix
parameters, assuming constant parameters?

Answer: Weekly data for 5 year. This gives you 52x5=260 data points. Of course, if risk param-
eters are time-varying, it may not be such a good idea to use data extending over such a long time
period.

4.2 Video: Exponentially weighted average
4.2.1 Historical volatility estimate

σ2
T =

1

T

T∑
t=1

R2
t if R̄ = 0

In the above formula each data point contributes with weight α = 1
T

σ2
T =

T∑
t=1

αtR
2
t where

T∑
t=1

αt = 1
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4.2.2 EWMA model

In an exponentially weighted moving average model (EWMA) the weights decline exponentially as
we move back through time.

αt =
λT−t∑T
t=1 λ

T−1

• λT : decay factor (0 < λ < 1), a low factor puts emphasis on recent data points. λ = 0.9 has
been found to be a good value.

Covariance parameter estimate:

cov(Ri, Rj) =
T∑
t=1

αt(Ri,t − R̄i)(Rj,t − R̄j)

Because EWMA puts emphasis on more recent data, we can use expanding window analysis (see
Section 4.1.3) and do not have to rely on rolling window analysis. (On the other hand, why not
limit the data that you use for calculations if part of the data contributes very little??).

The problem with rolling window analysis is that as long as the data point is within the rolling
window, it matters, and whenever it is out of the rolling window, it doesn’t matter at all. So the
day before it gets out, it’s as important as the most recent observation, the next day it’s out of the
rolling window and no longer matters. It is more intuitive to let the importance of each observation
decrease gradually over time. We keep all observations and we use a weighting scheme that gives
more importance to recent observations.

4.3 Video: ARCH and GARCH Models
4.3.1 ARCH model

ARCH stands for autoregressive conditional heteroskedasticity. ‘In statistics, a vector of random
variables is heteroscedastic (or heteroskedastic from Ancient Greek hetero “different” and skedasis
“dispersion”) if the variability of the random disturbance is different across elements of the vector.’

In an ARCH(T) model we assign some weight to the long-run variance VL.

σ2
T = γVL +

T∑
t=1

αtR
2
t

where

γ +
T∑
t=1

αt = 1

ARCH(1) model
σ2
T = γVL + αR2

T

where
γ + α = 1
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4.3.2 GARCH model

GARCH stands for generalized autoregressive conditional heteroskedasticity model.

In GARCH(1,1) we additionally assign some weight to the previous variance estimate to capture
volatility clustering. Levels of volatility values are clustered in time.

σ2
T = γVL + αR2

T + βσ2
T−1

with
γ + α+ β = 1

• σ2
T : new estimate of volatility

• γVL: contribution of long term volatility
• αR2

T : contribution of last return
• βσ2

T−1: contribution of previous estimate of volatility

Question: Suppose the estimation of a GARCH(1,1) model on daily data gives:

σ2
T = 0.000002 + 0.13R2

T + 0.86σ2
T−1

and also suppose the last daily estimate of the volatility is 1.6% per day and the most recent
percentage change in the market variable is 1%. (The change in the market variable is the return!
I wonder if variable is a typo and value was meant.) What is the new daily volatility estimate?

Answer: γVL = 0.000002 α = 0.13 β = 0.86

Mind that the GARCH formula uses variance, not volatility (=standard deviation)

[9]: import math
alpha=0.13
beta=0.86
gammaV=0.000002
return_val= 0.01
volatility=0.016
math.sqrt(gammaV + alpha * return_val*return_val + beta * volatility*volatility)

[9]: 0.015334927453366058

4.3.3 Variations on GARCH

In model GARCH(P,Q) p is the number of past return data points and q is the number of con-
tributing previous volatility estimates to compute the volatility estimate. ω is the contribution of
the long term volatility.

σ2
T = ω +

p∑
i=1

αiR
2
T−i +

q∑
j=1

βjσ
2
T−j

ω = γVL
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To take into account that volatility changes over time, we introduce additional parameters:
α1 . . . αp β1 . . . βq γ. This increases the curse of dimensionality (see Section ??).

4.3.4 Factor Garch

The orthogonal (O)GARCH model is a factor model for explaining co-variance terms between two
different assets, and it is a factor model with uncorrelated orthogonal factors. It only allows for
time variation in the variance of the factors.

σ̂OGARCH
ij = σ̂ij(t) =

K∑
k=1

β̂ikβ̂jkσ̂
2
Fk
(t)

Question: How many parameters do you need to estimate when using a 2-factor models with
GARCH(1,1) model for the volatility of each one of the two factors? Not mentioned: you have
a 500 stock portfolio.

Answer: We first need 500 volatility estimates for individual stock returns, plus 500 estimates
of betas of stocks with respect to factor 1, 500 estimates of betas of stocks with respect to
factor 2, and finally 3 GARCH parameter estimates for each factor, which gives a total of
500+500+500+2x3=1,506, which is not much more than if we had assumed constant volatility
parameters.

5 Week 3 Section 1
5.1 Video: Lack of Robustness of Expected Return Estimates
Sample based information is, unfortunately, close to useless when it comes to expected return
estimation. Sample based expected return can be very sample dependent. Small changes in the
sample will lead to large changes in the sample based estimate for expected returns. Sample based
expected return estimators are extremely noisy, especially for high volatility portfolios. So, the
confidence intervals are very large, we have very little confidence that the estimator that we come
up with is of any meaningfulness.

5.1.1 Frequentist versus Bayesian statics.

In Frequentist statistics information is only gathered from taking samples. Bayesian statistics uses
prior knowledge to draw conclusions.

5.1.2 Bayesian statistics and statistical shrinkage again!

The sample mean estimate might be improved by shrinking the individual means to the grand
sample mean.

µ̄i =
1

T

T−1∑
t=0

Ri
t,t+1

µ̄ =
1

N

N∑
i=1

µ̄i
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µ̂i = δµ̄+ (1− δ)µ̄i

• N : number of stocks
• T : the number of (equally spaced in time) samples for each stock i.
• µ̄i: sample based average return for each stock i between t and t+ 1 (this is noisy data).
• µ̄: the average of all µ̄i (grand mean)
• µ̂i: expected return of each stock i of the N stocks, using shrinkage
• δ: shrinkage factor (0..1)

Question: Consider 3 assets with sample means equal to 10%, 15% and 20%, and assume a
shrinkage factor d=50%. What is the shrinkage estimator for the expected return on these 3
assets?

[12]: import pandas as pd
sample_means= pd.DataFrame([0.1,0.15,0.2])
grand_mean= sample_means.mean()
delta= 0.5
shrinkage_means= delta*grand_mean + (1-delta)* sample_means
shrinkage_means

[12]: 0
0 0.125
1 0.150
2 0.175

Answer: Grand mean = (10%+15%+20%)/3 = 15%. Shrinkage estimator for asset 1: 50% x
10% + 50% x 15% = 12.5%. Shrinkage estimator for asset 2: 50% x 15% + 50% x 15% = 15%.
Shrinkage estimator for asset 1: 50% x 20% + 50% x 15% = 17.5%.

5.2 Video: Agnostic Priors on Expected Return Estimates
To maximize the Sharpe Ratio of a portfolio SRp, we need we need the expected return of the
portfolio µp, for which we need the expected returns of the individual components.

SRp ≡
µp − r

σp

5.2.1 First agnostic prior: expected returns are all equal

We can use as prior knowledge that the expected return of each component is equal to the grand
mean (see Section 5.1.2). The estimate for all returns is now equal, independent of their volatility.

5.2.2 Second agnostic prior: Sharpe ratios are all equal

Sharpe ratios are constant across assets. Excess expected return (return minus risk free return) is
proportional to volatility.

µi − rf = λσi
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• λ: Sharpe ratio

SRp =

∑N
i=1wi(µi − rf )√∑N

i,j=1wiwjσij

=

∑N
i=1wi(µ− rf )√∑N

i,j=1wiwjσij

= λ

∑N
i=1wiσi√∑N

i,j=1wiwjσij

•
∑N

i=1wiσi: weighted average of the component volatilities
•
√∑N

i,j=1wiwjσij : portfolio volatility

We can maximize the portfolio Sharpe ratio by maximizing the numerator given by the weighted
average of the volatilities divided by portfolio volatility. This ratio is known as diversification ratio.
We do not have to know what the value of λ is.

Question: What is the Sharpe ratio of a portfolio of an equally-weighted portfolio of two stocks
with volatility respectively equal to 20% and 30%, and a pairwise correlation .6, assuming that
they both have a 70% Sharpe ratio?

• w1 = 0.5 (weight)
• w2 = 0.5
• σ1 = 0.2 (volatility)
• σ2 = 0.3
• ρ = 0.6 (correlation)
• λ = 0.7 (Sharpe ratio)

ρ(X,Y ) =
cov(X,Y )√

var(X)var(Y )
⇒ cov(X,Y ) = ρ(X,Y )

√
var(X)var(Y )

var(X) = σ2
X

SRp = λ

∑N
i=1wiσi√∑N

i=1

∑N
j=1wiwjσij

[13]: import math
w1= 0.5
w2= 0.5
sigma1= 0.2
sigma2= 0.3
rho= 0.6
lambdaa=0.7

var1= sigma1*sigma1
var2= sigma2*sigma2
cov12= rho*sigma1*sigma2

# see SRp formula above
SRp= lambdaa* (w1*sigma1 + w2*sigma2)/ math.sqrt( w1*w1*var1 +2*w1*w2*cov12␣
↪→+w2*w2*var2 )
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SRp

[13]: 0.7787397791074733

Answer: 77.87%

5.2.3 Rewarded versus unrewarded risk

Asset pricing theory suggests that only systematic risk is rewarded. Specific risk can be diversified
away.

Well, in this context, we may want to assume that all stocks have the same Sharpe ratio. We may
want to assume that there’s a relationship between excess expected return and not total risk, but
the systematic part of volatility. So in other words, we may want decompose volatility in terms of
specific risk and systematic risk, and relate and come up with a better estimate for expected returns
by relating it to systematic risk as opposed to relating it to total risk.

Question: Assume that a stock index and a bond index have the same Sharpe ratio, and that
this common Sharpe ratio is equal to 50%. Further assume that interest rate is 2% and that stock
index volatility is 20% and bond index volatility is 10%. Calculate the stock index expected return
and the bond index expected return.

µ = λσ + rf

• µ: expected return
• λ = 0.5
• rf = 0.02
• σbi = 0.1
• σsi = 0.2

Answer: bond: 0.5*0.1+0.02= 7%; stock: 0.5*0.2+0.02= 12%

5.3 Video: Using Factor Models to Estimate Expected Returns
5.3.1 CAPM-based expected return estimates

If CAPM (see Section 1.2.2) is the true asset pricing model, then the excess expected return is
proportional to β.

µi − rf = βi(µM − rf )

• µi: expected return of stock i
• rf : riskfree rate
• βi: factor for stock i
• µM : market return
• µM − rf : market risk premium for systematic risk

The Treynor ratio:

TRi =
µi − rf

βi
= µM − rf
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The Treynor ratio has an identical value for all stocks: µM − rf .

Question: Assume that a stock has an expected return of 13% and a volatility of 20%. Further
assume that the risk-free rate is 3%, and the stock beta is 1. What is the Sharpe ratio (SR) and
Treynor ratio (TR) for this stock?

• µi = 0.13
• σi = 0.2
• rf = 0.03
• βi = 1

SRi =
µi − rf

σi

TRi =
µi − rf

βi

Answer: SR= (0.13-0.03)/0.2= 50% TR= (0.13-0.03)/1= 10%

CAPM is not the true asset pricing model.

Question: Assume that last year volatility is 20% and last year performance is 15% for stock 1,
while it is 30% and 18% respectively for stock 2. Further assume that stock 1 beta is 1.1 and stock
2 beta is 0.8. Which stock should have the highest expected return if the CAPM is correct?

µi − rf = βi(µM − rf ) ⇒ µi = βi(µM − rf ) + rf

Answer: according to CAPM (see Section 1.2.2) excess return is fully predicted by the value of
β. Stock 1 has the higher value of β. Historic return values have no predictive power. CAPM does
not consider volatility.

5.3.2 Expected return estimates with mult-factor models

With multi-factor models excess expected returns are given by a combination of risk exposures
times factor premia.

Stephen Ross Arbitrage pricing theory:

µi − rf =

K∑
k=1

βik(µk − rf ) =

K∑
k=1

βikλkσk withλk =
µk − rf

σk

• µi − rf : excess expected return for stock i
• βik(µk − rf ): the contribution of the excess expected return of stock k to that of i
• βik: the factor of stock k for stock i

We need to be able to estimate the excess returns uk − rf of the components, which is equally
difficult as estimating the expected return of µi.

Different approaches: 1. agnostic approach: assume that all factors have the same Sharpe ratio
2. frequentist approach: determine the Sharpe ratios by looking at the longest possible sample. 3.
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Active approach: the use of qualitative or quantitative analysis by a portfolio manager (back to
voodoo)

Question: Assume that a stock has a beta of 1 with respect to factor 1 and a beta of .5 with
respect to factor 2. Further assume that the excess expected return is 6% on factor 1 and 8% on
factor 2, and that the risk-free rate is 2%. What is the expected return on the stock, assuming that
these two factors are the only rewarded factors?

• β1 = 1
• β2 = 0.5
• µ1 − rf = 0.06
• µ2 − rf = 0.08
• rf = 0.02

Answer: the expected return β1(µ1 − rf ) + β2(µ2 − rf ) + rf = 1 ∗ 0.06 + 0.5 ∗ 0.08 + 0.02 = 12%

6 Week 3 Section 2
6.1 Video: Extracting Implied Expected Returns
In the Black-Litterman model (BL) you have active views of expected returns and those are used
in portfolio construction.

6.1.1 Finding an anchor point

BL uses a preferred benchmark as as a starting point (anchor) in the portfolio construction process.
If the portfolio manager does not have a lot of confidence in his views, the portfolio should mainly
consist of assets from the benchmark.

BL uses Bayesian analysis.

6.1.2 Neutral/implied expected returns

The neutral prior distribution is obtained by reverse engineering, assuming the benchmark is the
optimal portfolio.

Engineering of portfolio construction: - start with expected returns µi and and covariances σi,j -
determine the weights w∗

i of the maximum Sharpe ratio portfolio (denoted by ∗).

(µi, σi,j)i,j=1...N −→ (w∗
i )i,j=1...N

Unfortunately, there are no meaningful estimates of expected returns. We cannot determine stable
Sharpe ratio maximizing weights w∗

i .

Instead we do reverse engineering (reverse portfolio optimization) and start with weights for a
selected benchmark (cap-weighted, equally weighted, any benchmark).

• take as input:
– the covariance parameters σi,j
– the weights of the preferred benchmark wbenchmark

i .
• Calculate (extract) the (implied) expected returns (vector Π) that you would get from using

these weights.
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(σi,j , w
benchmark
i )i,j=1...N −→ Π = (µimplied

i )i=1...N

Question: Assume two uncorrelated stocks with volatility 10% and 15% respectively. Further
assume that the risk-free rate is 0%. What can we say about the neutral expected returns consistent
with an equally-weighted benchmark portfolio?

Answer: The official answer claims that we know that the Sharpe ratio maximizing weights are
proportional to (µi − r)/σ2

i . I have no recollection of that.

µ1/σ
2
1 = µ2/σ

2
2 = 50% µ1/µ2 = σ2

2/σ
2
1 = 2.25

Bayesian prior is that true expected returns are centered at market implied values denoted by Π.

µ = Π+ εe

• εe ∼ N(0, τΣ) (0 ??)
• τ is a scalar indicating the uncertainty of the prior
• Σ = (σij)i,j=1...N is the covariance matrix

6.2 Video: Introducing Active Views
The Black-Litterman approach mixes market (benchmark) implied expected returns with the man-
ager’s active views about those expected returns.

6.2.1 Active view

An active view is expressed as a statement that the expected return on a given asset within a
portfolio P has a normal distribution with mean Q and standard deviation Ω. Q is a vector of
mean values of K views in the portfolio. The view may concern an asset or a set of assets.

Pµ = Q+ εv where εv ∼ N(0,Ω)

• N is the total number of assets
• N(0,Ω) is the normal distribution??
• K is the total number of views that will be expressed.
• P is a K ×N matrix that identifies the assets involved in the views.
• Q is a K-vector of expected returns on these portfolios or assets (??).
• Ω is a K ×N matrix of error terms in the views (confidence levels)
• εv: uncertainty in the views

6.2.2 Black-Litterman model

The Black-Litterman model combines benchmark implied expected returns Π (prior return vector):

µ = Π+ εe where εe ∼ N(0, τΣ)

with active views:
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Pµ = Q+ εv where εv ∼ N(0,Ω)

In a Bayesian framework the new expected returns µ̄ (posterior return vector) can be written as:

µ̄ =
[
(τΣ)−1 + P ′Ω−1P

]−1 [
(τΣ)−1Π+ P ′Ω−1Q

]
• µ̄: expected returns vector
• Π: the bench-marked implied expected return
• Q: the active views

6.3 Video: Black-Litterman Analysis
6.3.1 Expected returns - no views

The historical mean is a noisy estimate for expected return. The expected return based on the
CAPM-model is less noisy.

(I probably somehow missed it, but I do not remember seeing the CAPM expected return clearly
explained. I found the explanation on Investopedia.)

We start by extracting the expected return from the benchmark portfolio (cw, ew or any other
benchmark). If we compare the CAPM expected returns with the benchmark expected returns,
the correlation is high.

The BL approach can be extended to any benchmark. For this just derive in the first step implied
expected returns consistent with the EW portfolio being the Max Sharpe Ratio portfolio.

6.3.2 Introducing active views

THe BL model allows active views to be expressed in absolute or relative terms.

We are going to assume that the confidence levels for the views are going to be proportional to the
variance of the prior. Just as in one of the classical implementation of the Black-Litterman model
that is displayed in a paper by He and Litterman (version with good layout!) in 1999.

7 Week 4 Section 1
7.1 Naive Diversification
7.1.1 Proverbial definition for diversification

Diversification is having a well-balanced allocation of your dollars to different assets or securities.

7.1.2 Mean goal versus end goal

• Mean goal: well-balanced portfolio
• End goal: well rewarded portfolio

Diversification diversifies away some of the unrewarded risk within the portfolio and that allows us
to achieve the highest possible reward per unit of risk.
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7.1.3 Effective number of constituents (ENC)

What is the number of meaningful allocations to assets, small fractions do not help with diversifi-
cation.

ENC ≡

(
N∑
i=1

w2
i

)−1

• ENC: Effective number of constituents
• wi: the weight of asset i in the portfolio
• N : the number of assets in the portfolio

Example, extreme case 1: fully concentrated portfolio with w1 = 1 and no allocation to the other
N − 1 assets. This gives ENC = 1

12+02+...+02
= 1.

Example, extreme case 2: equally weighted portfolio with wi = 1
N . This gives ENC =

1

( 1
N )

2
+...+( 1

N )
2 = N .

The equally weighted portfolio gives the maximum value for ENC.

The ENC for the S&P500 (with 500 stocks) is typically about 4 times smaller than the nominal
number of constituents. In this course, ENC is expressed as a percentage: ENCS&P500 = 26.9%.

Question: What is the effective number of constituents (ENC) for a portfolio invested 20% in a
20% volatility asset and 80% in a 10% volatility asset, assuming that these assets are uncorrelated?

[1]: w1= 0.2
w2= 0.8
ENC= 1/(w1*w1+w2*w2)
ENC

[1]: 1.4705882352941173

Answer: ENC = 1.47

7.2 Video: Scientific diversification
7.2.1 GMV

In order to maximize the return, give a certain risk budget, we would like to hold the Maximum
sharpe Ratio (MSR) portfolio. It is difficult to reliably get the expected return values needed to
calculate the portfolio weights. Instead we can get the Global Minimum Variance (GMV) portfolio,
this portfolio does not require estimated return estimates. (See image below.)
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Image from ResearchGate

Derivation of the Global Minimum Variance portfolio

Minσ2
p = Min

N∑
i=1

N∑
j=1

wiwjσij = Min
N∑
i=1

N∑
j=1

wiwjσiσjρij

7.2.2 Problems with GMV portfolios

GMV assumes equal expected returns for all assets in the portfolio, which is unlikely. When
expected returns are equal, the MSR and GMV portfolio coincide. This means we can use the
quadatic optimizer to find the MSR portfolio (as we did in the first course).

The optimizer will not optimize on high returns (since they are all equal), but will over-weight low
volatility components. the result of this is that GMV is not a well balanced portfolio. It has been
found that GMV is not consistently better than the equally weighted portfolio.

7.2.3 Improving GMV portfolios

There are several ways to improve the performance of GMV:

Minimum value for ENC GMV with an imposed minimum value for ENC (see Section 7.1.3)
mixes scientific diversification with naive portfolio diversification (see Section 7.1).

Same volatility Impose that all assets have the same volatility.
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Min
N∑
i=1

N∑
j=1

wiwjσiσjρij −→ Minσ2
N∑
i=1

N∑
j=1

wiwjρij ifσi = σ for i = 1, . . . , N

The optimizer now searches for maximally decorrelated assets in the portfolio.

7.3 Video: Measuring risk contributions
7.3.1 Shortcomings of ENC

Well balanced portfolios in terms of dollar contributions can be highly concentrated in terms of
risk contributions. It is useful to know the contribution of each asset to the risk of the portfolio.

Example: 50% allocation in stock 1 with 30% volatility; 50% allocation in 10% volatility bond
2, correlation=0. What is the variance of the portfolio? (Watch out, we are mixing variance and
volatility!)

σ2
p =

N∑
i=1

N∑
j=1

wiwjσiσjρij

w1 = 0.5, w2 = 0.5, σ1 = 0.3, σ2 = 0.1 and ρij = 0 for i ̸= j.

σ2
p = 0.52 × 0.32 + 0.52 × 0.12 = 0.025

The variance of stock 1 in the portfolio is 50%2 of 30%2. The risk contribution for stock 1 is
p1 =

0.52×0.32

σ2
p

= 90%.

Now assume, for this example, that the correlation ρ1,2 = 0.25.

σ2
p = 0.52 × 0.32 + 0.52 × 0.12 + 2× 0.5× 0.5× 0.3× 0.1× 0.25 = 0.0288

7.3.2 Allocating the correlated component

The correlated component of the variance is split by the fraction of contribution to the portfolio.

Question: Consider a portfolio invested at 50% in a 30% volatility stock and 50% in a 10%
volatility bond. What are the risk contributions in case the correlation between the stock and the
bond returns is 0.5.

[21]: w1= 0.5; w1_2= w1*w1
w2= 0.5; w2_2= w2*w2
vol1= 0.3; vol1_2= vol1*vol1 #var1= vol1_2
vol2=0.1; vol2_2= vol2*vol2
rho= 0.5
var_p= w1_2*vol1_2 + 2*w1*w2*vol1*vol2*rho + w2_2*vol2_2
p1= (w1_2* vol1_2 + w1_2 * vol1 * vol2 * rho) / var_p
p1

[21]: 0.8076923076923076

Answer: p1 ≃ 81%
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8 Week 4 Section 2
8.1 Video: Simplified risk parity portfolios
8.1.1 Risk parity portfolio

Risk parity portfolio is a portfolio with equal risk contribution from both assets. It maximizes the
ENC (see Section 7.3.1) applied to risk contributions, as opposed to dollar contributions. This
version of ENC is called ENCB, known as the effective number of correlated bets.

Question: Assume an annualized volatility of 15.1% on a broad equity index and annualized
volatility of 4.6% on a broad bond index, with a 0.2 correlation. What is the ENCB for the 60/40
portfolio?

[4]: w1= 0.6; w1_2= w1*w1 # 1 = equity
w2= 0.4; w2_2= w2*w2 # 2 = bond
vol1= 0.151; vol1_2= vol1*vol1 #var1= vol1_2
vol2=0.046; vol2_2= vol2*vol2
rho= 0.2
var_p= w1_2*vol1_2 + 2*w1*w2*vol1*vol2*rho + w2_2*vol2_2
p1= (w1_2* vol1_2 + w1_2 * vol1 * vol2 * rho) / var_p # risk contribution 1
p2= (w2_2* vol2_2 + w2_2 * vol1 * vol2 * rho) / var_p # risk contribution 2
# ENCB
1/(p1*p1+p2*p2)

[4]: 1.1147824352230271

Answer: ENCB = 1.15

In the two asset case, risk parity weights are proportional to the inverse of the volatilities. The risk
contributions of asset 1 and asset 2 are equal if their weights w1,2 satisfy the following equation:

w1

w2
=

σ2
σ1

8.1.2 Interesting properties

The risk parity portfolio is also known as the equal risk contribution portfolio (ERC). It is an inverse
volatility weighted portfolio if all pairwise correlations are equal (important for portfolios with more
than two assets). In general, pairwise correlations will not be equal!

Question: Assume that a portfolio is invested in a 20% volatility asset and in a 10% volatility
asset, and further assume that these assets are uncorrelated. What is the risk parity allocation for
this portfolio?

Answer: w1 = 0.2 w2 = 0.1 w1
w2

= σ2
σ1

= 0.1
0.2 −→ w2 = 2 ∗ w1

8.2 Video: Risk Parity Portfolios
8.2.1 General expressions

The portfolio variance σ2
p is the sum of the asset i variances and covariances of i, j:
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σ2
p =

N∑
i=1

N∑
j=1

wiwjσij =

N∑
i=1

wiσ
2
i +

N∑
i=1

N∑
i ̸=j

wiwjσij

Contribution pi of asset i to the risk of the portfolio:

pi =
w2
i σ

2
i +

∑N
j ̸=iwiwjσij

σ2
p

The effective number of correlated bets ENCB (similar to ENC):

ENCB =

(
N∑
i=1

p2i

)−1

8.2.2 Risk parity portfolio

Risk parity portfolio: choose portfolio (of N assets) with weights wi so as to equalize risk contribu-
tions pi = 1

N , or equivalently, maximize ENCB. This is also know as equal risk contribution (ERC)
portfolio.

There is no analytical way to achieve risk parity, you have to use a numerical approach. Assets
having the same volatility levels is not sufficient to create a risk parity portfolio because you have
to take the pairwise correlation factors into account.

Risk parity is a naïve diversification strategy. No attempt is made to maximize the Sharpe ratio.

8.3 Video: Comparing Diversification Options
8.3.1 Competing portfolio construction schemes

For US large cap stocks (1987-2018) we compare 4 schemes:

• cap-weighted (cw) portfolio
• equally-weighted (ew) portfolio
• equal risk contribution (erc) portfolio (see Section 8.2.2)
• global minimum variance portfolio (gmv) (see Section 7.2.1)

For the gmv portfolio, the minimum weight that has been chosen is 1/(3 × 500) (one third of the
ew weight) and the maximum weight is 3/500 (three times the ew weight).

Compared to cw, ew has a higher volatility but a better ENCB value (see Section 8.2.1). ENC is
much better by design.

Compared to cw, erc has a better performance, lower max drawdown, better Sharpe ratio and
better ENC (see Section 7.1.3). ENCB is much better by design.

Compared to cw, gmv has better performance, lower volatility, half of the max drawdown, more
than double the Sharpe ratio, better ENC and ENCB.

For US large cap stocks (1987-2018), gmv has performed the best. This is because of the bear
markets after the tech bubble (2003) and the subprime crisis (2008).
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8.4 Video: Lab-session Risk Contributions and Risk Parity
The word ‘risk’ derives from the early Italian risicare, which means ‘to dare’. In this sense, risk is
a choice rather than a fate. The actions we dare to take, which depend on how free we are to make
choices, are what the story of risk is all about.

Peter L. Bernstein, Against the Gods: The Remarkable Story of Risk
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